
Software Engineering

and Architecture

Release Management &

Branching Models

Branching

CS@AU Henrik Bærbak Christensen 2

Git branches

• Git is really strong in branching

support !

– Why? Because it is a powerfull

development tool…

• Example: feature branch

– Arne makes branch ‘add-german’

and change code without interfering

with Bente

– Bente makes branch ‘fix-bug-21’

and fixes – well – bug #21

• Merge back when done

– Or orphan branch if really bad idea…
CS@AU Henrik Bærbak Christensen 3

Software is a Lab!

• I do a lot of experiments on my code!

– I was originally trained as a physicist ☺

• Experiment = I think this is a good idea, but do not know?

• How do I get ‘to know!’ By doing it!

• Make an experimental branch in git

– It was a good idea! Merge that branch into main

– It was a bad idea!!! Orphan the branch

CS@AU Henrik Bærbak Christensen 4

Release Management

• You need to know what you release!

– Users report bugs and you need to fix them fast on the right code

• Example

– Release to AlphaTown

• Rewrite part of the AlphaTown code to support BetaTown

– (Major refactorings in core AlphaTown code)

– AlphaTown phones us ”Hurry, fix major bug now”

• But the code base is in a ‘state of flux’ (read: messy, broken, …) and

also includes new features that AlphaTown has not paid for

– What to do???

CS@AU Henrik Bærbak Christensen 5

Not all versions are equal

• Some versions attain a special meaning: Release

• How to manage?

– Write down the version identity. Git: 4ef678a…

– ‘Tag’ a version on the graph.

• Essentially put a human readable label on specific version

– Make a ‘release branch’ (single release branch model)

• Branch and name the new branch ‘Release-AlphaTown-V1.7.4’

– Merge into a ‘release branch’ and tag it (major release branches

model)

• Merge current version into global release branch and tag it

– Main branch is the ‘release branch’, no dev on this branch

• “GitHub Flow” model

CS@AU Henrik Bærbak Christensen 6

(SideNote)

• Some of you have in a previous course handed in

mandatories using Git but made one folder pr hand-in?

– I.e. ‘releases’ of the mandatory project

• This is not the software dev way!

– This is a 1990’es manual hack in the absence

of a version control system

• SWEA: We use Git to do release

management

CS@AU Henrik Bærbak Christensen 7

Two Release Management Models

• Single Release Branch Next slide

– Daily development on ‘master’

– New release => Merge into ‘release’ branch

– Pro: Always find release as tip on release branch

• Major Release Branches Next+1 slide

– New release => Create new branch

– Pro: Naming the releases by the branch name

• Used in SWEA up until E2020…

CS@AU Henrik Bærbak Christensen 8

Simple Release Model A

• Single Release Branch

– Hotfixing must be done

on separate branch

– And merged back

CS@AU Henrik Bærbak Christensen 9

Simple Release Model B

• Major Release Branches

– Each major release give

rise to new branch

CS@AU Henrik Bærbak Christensen 10

Continuous Deployment

• Release Management is important but…

– There is a distinct release process involved

– I download the latest release and install

• Lots of modern software does not

follow that paradigm

– You do not download & install facebook

– Web systems are continuously updated…

• CD = You continuously get the latest release

– Releasing every couple of hours! Done by machines…

CS@AU Henrik Bærbak Christensen 11

CD Release Management

• CD streamlines release management!

– ‘main’ is the release branch!

• Daily work done on feature branches

– When feature/iteration is ‘working’…

• Tests pass, requirements complete

– … you merge back into master

• GitHub Flow
– [https://docs.github.com/en/get-started/quickstart/github-flow]

– Note: This release management model is not tied to GitHub!

CS@AU Henrik Bærbak Christensen 12

main

SWEA Relation

• In the SWEA mandatory project…

• You should create an ‘iteration branch’ that holds the

development in the given iteration / delivery

• Like branch ‘iteration3’ =

– Work on the requirements for mandatory ‘iteration 3’

• Contains ‘work in progress’ code, not suitable for customers

– But ‘main’ branch can always be released

• Because it is correct, working, without bugs, stable, latest…

CS@AU Henrik Bærbak Christensen 13

GitHub Flow

In Practice

Overview

CS@AU Henrik Bærbak Christensen 15

Iteration 3

main
1. Tell Git to create branch

Overview

CS@AU Henrik Bærbak Christensen 16

Iteration 3

main

(2.) Associate ‘Merge Request’
with the branch

Overview

CS@AU Henrik Bærbak Christensen 17

Iteration 3

main

3. Develop on that branch,
commit often ☺

Overview

CS@AU Henrik Bærbak Christensen 18

Iteration 3

main

4. Release: Merge back into
main branch

Starting Iteration Work

• Let us start on the exciting mandatory 3 – hurrah!

• Tell GitLab about the branch

– Link will be provided if you want to create a ‘merge request’

CS@AU Henrik Bærbak Christensen 19

To see same procedure in
IntelliJ’s git, see screencasts

on week plan…

(Merge Request)

• Follow the link that Git provides

• And fill in the details about Description, and ‘Create…’

CS@AU Henrik Bærbak Christensen 20

Aka: Pull Request

Now: Work ☺

• Do the TDD

– Do a ‘commit and push’ after each finished TDD iteration

CS@AU Henrik Bærbak Christensen 21

Release Time

• We find it is time to release

– That is: this is the best shot at a mandatory hand-in

• (Mark the iteration branch as ‘ready’ in AU GitLab)

CS@AU Henrik Bærbak Christensen 22

And merge back to Main

CS@AU Henrik Bærbak Christensen 23

Release Time

• The ‘commandline’ way

CS@AU Henrik Bærbak Christensen 24

Or use the - -no-commit, to
‘dryrun’

Equivalent in IntelliJ

CS@AU Henrik Bærbak Christensen 25

Branch in IntelliJ;
Associate merge

request in GitLab;
WORK

Over to GitLab

• And fill in the details as outlined earlier

CS@AU Henrik Bærbak Christensen 26

Merge Request/Branch

• I have shown it here where a merge request is

associated with the ‘iteration 3’ branch.

– It is a bit overkill in SWEA context to create merge requests, so

– It is optional to do that in the mandatory…

• The branch is important, required in mandatory

– Working on an iteration branch is important

• git checkout –b iteration4 Create branch

• git commit & git push Work on branch

• git checkout main; git merge iteration4 Merge back to main

CS@AU Henrik Bærbak Christensen 27

In the Branching Model

• Release is now present

on the main branch.

• The key point:

– You can always release

the software on the

main branch!

• CD = Cont. Delivery

– Every 1 hour, a computer

simply copies SW

from main branch onto

production machines

CS@AU Henrik Bærbak Christensen 28

Iteration 3

main

Simple Example

• Crontab on ‘baerbak.cs.au.dk’

CS@AU Henrik Bærbak Christensen 29

Summary

• Branching supports the release and development

process

– Releasing, bugfixing, subteams, feature branches, …

• Many different models can be made

– Keep it simple! Emphasize ease in daily work!

• In SWEA we adopt a simple CD model – GitHub Flow

– Latest working release on ‘main’

– Do development on an ‘iteration’ branch,

• Optional use ‘merge requests’

CS@AU Henrik Bærbak Christensen 30

